

Space saving POWR-T ${ }^{m}$ fuses are the most compact fuses available in ratings above 30 amperes - less than one-third the size of comparable Class R fuses. When rated in accordance with the NEC, POWR-T fuses provide fast-acting overload and short circuit protection for non-inductive circuits and equipment. Used in inductive circuits, the ampere rating of POWR-T fuses must be increased to prevent opening on inrush currents. In such instances, POWR-T fuses may provide only short circuit protection.
For motor and general purpose circuits where space is not critical, we recommend POWR-PRO ${ }^{\circledR}$ JTD_ID Indicator series, LLNRK/LLSRK series, or FLSR_ID Indicator series.

APPLICATIONS

Protection of individual electric services and meters.
Main switches containing Class T fuses may be used to provide compact protection for meter stacks.
Molded case circuit breaker load centers and panelboards have increased interrupting ratings when "series rated" with Littelfuse Class T fuses. Refer to panelboard manufacturers' literature for UL Listed combination of fuses and panelboards. Series ratings up to 200,000 amperes are available.

SPACE-SAVING

Typical three-pole Class T fuse blocks require less than 50\% of the panel area required for Class R fuse blocks. Switch enclosures, fuse pullouts, and other equipment using Class T fuses are often correspondingly more compact.

SAFETY

- 200,000 A.I.R. - Reliable interruption of all overcurrents up to 200,000 amperes.

SPECIFICATIONS

Voltage ratings: AC: 300 Volts (JLLN); 600 Volts (JLLS) DC: 125 Volts (JLLN 110 - 1200A); 300 Volts (JLLS)
Interrupting ratings:AC: 200,000 amperes rms symmetrical
DC: 20,000 amperes (JLLN $110-1200$ A) (JLLS 1 - 1200A)
Ampere range: 1-1200 amperes
Approvals: AC: UL Listed Class T per UL 248
(formerly UL 198H) (File No. E81895): JLLN/JLLS (1-800A) UL Recognized (. S) (File No. E71611): JLLS (900-1200A) CSA Certified HRCI-T (File No. LR29862): JLLN/JLLS (1-600A)
DC: Additionally UL Listed per UL 198L: JLLN (110 - 1200A) (File No. E81895) JLLS 300 VDC is Littelfuse self-certified

AMPERE RATINGS						
1	20	45	90	175	350	700
2	25	50	100	200	400	800
3	30	60	110	225	450	1000
6	35	70	125	250	500	*1100
10	40	80	150	300	600	1200
15						
* JLLS only.						
Examp	par	mber	ies \&	erag	JLLS	

RECOMMENDED FUSE BLOCKS

LT300 series (for JLLN series fuses)
LT600 series (for JLLS series fuses)
Refer to Fuse Block section of this catalog for additional information.

- Extremely current limiting - Stops damaging short circuit current faster than any mechanical protective device.
- Fast-acting - Provides fast-acting overload protection to equipment such as variable speed drives, rectifiers and other equipment containing surge-sensitive components.

LONGER EQUIPMENT LIFE

- Current limiting design greatly reduces damage to equipment caused by heating and magnetic effects of short circuit currents.

ECONOMICAL

- Extremely current limiting design often permits use of readily available, less costly equipment.
- Used as input or output fuses for surge-sensitive components, such as variable speed drives and rectifiers, fastacting POWR-T JLLN/JLLS fuses may prevent opening of expensive semiconductor fuses protecting individual components.
NOTE: JLLN Class T 300 volt fuses are UL listed for circuits not exceeding 300 volts to ground. However, since UL does not include testing 300 volt Class T fuses on 277/480 volt three-phase bolted faults, Littelfuse does not recommend using 300 volt Class T fuses where phase-to-phase voltage exceeds 300 volts.

JLLN/JLLS POWR-T™ Class T Fuses

Fig. 1

Fig. 2

Fig. 3

AMPERES	REFER TO FIG. NO.	SERIES	DIMENSIONS IN INCHES (mm in parentheses)						
			A	B	C	D	E	F	G
1-30	1	JLLN	$\begin{gathered} 7 / 8 \\ (22.2) \end{gathered}$	-	$\begin{aligned} & 9 / 32 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 13 / 32 \\ & (10.3) \end{aligned}$	-	-	-
		JLLS	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	-	$\begin{aligned} & 9 / 32 \\ & (7.1) \end{aligned}$	$\begin{gathered} 9 / 16 \\ (14.3) \end{gathered}$	-	-	-
35-60	1	JLLN	$\begin{gathered} 7 / 8 \\ (22.2) \end{gathered}$	-	$\begin{aligned} & 9 / 32 \\ & (7.1) \end{aligned}$	$\begin{gathered} 9 / 16 \\ (14.3) \end{gathered}$	-	-	-
	2	JLLS	$\begin{aligned} & 1-9 / 16 \\ & (39.7) \end{aligned}$	$\begin{aligned} & 13 / 16 \\ & (20.6) \end{aligned}$	$\begin{aligned} & 13 / 32 \\ & (10.3) \end{aligned}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1-3 / 32 \\ & (27.8) \end{aligned}$	-
70-100	3	JLLN	$\begin{aligned} & 2-5 / 32 \\ & (54.8) \end{aligned}$	$\begin{aligned} & 1-9 / 16 \\ & (39.7) \end{aligned}$	$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & 13 / 16 \\ & (20.6) \end{aligned}$	$\begin{aligned} & 27 / 32 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 9 / 32 \\ & (7.1) \end{aligned}$	$\begin{gathered} 1 / 8 \\ (3.2) \end{gathered}$
		JLLS	$\begin{gathered} 2-61 / 64 \\ (75.0) \end{gathered}$	$\begin{gathered} 2-23 / 64 \\ (59.9) \end{gathered}$	$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & 13 / 16 \\ & (20.6) \end{aligned}$	$\begin{gathered} 1-41 / 64 \\ (41.7) \end{gathered}$	$\begin{aligned} & 9 / 32 \\ & (7.1) \end{aligned}$	$\begin{gathered} 1 / 8 \\ (3.2) \end{gathered}$
110-200	3	JLLN	$\begin{aligned} & 2-7 / 16 \\ & (61.9) \end{aligned}$	$\begin{gathered} 1-11 / 16 \\ (42.9) \end{gathered}$	$\begin{gathered} 7 / 8 \\ (22.2) \end{gathered}$	$\begin{aligned} & 1-1 / 16 \\ & (27.0) \end{aligned}$	$\begin{aligned} & 27 / 32 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 11 / 32 \\ & (8.7) \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & (4.8) \end{aligned}$
		JLLS	$\begin{gathered} 3-1 / 4 \\ (82.6) \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (63.5) \end{gathered}$	$\begin{gathered} 7 / 8 \\ (22.2) \end{gathered}$	$\begin{aligned} & 1-1 / 16 \\ & (27.0) \end{aligned}$	$\begin{gathered} 1-21 / 32 \\ (42.1) \end{gathered}$	$\begin{gathered} 11 / 32 \\ (8.7) \end{gathered}$	$\begin{aligned} & 3 / 16 \\ & (4.8) \end{aligned}$
225-400	3	JLLN	$\begin{gathered} 2-3 / 4 \\ (69.9) \end{gathered}$	$\begin{gathered} 1-27 / 32 \\ (46.8) \end{gathered}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{aligned} & 1-5 / 16 \\ & (33.3) \end{aligned}$	$\begin{aligned} & 53 / 64 \\ & (21.0) \end{aligned}$	$\begin{aligned} & 13 / 32 \\ & (10.3) \end{aligned}$	$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$
		JLLS	$\begin{aligned} & 3-5 / 8 \\ & (92.1) \end{aligned}$	$\begin{gathered} 2-23 / 32 \\ (69.1) \end{gathered}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 1-19 / 32 \\ (40.5) \end{gathered}$	$\begin{gathered} 1-23 / 32 \\ (43.7) \end{gathered}$	$\begin{aligned} & 13 / 32 \\ & (10.3) \end{aligned}$	$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$
450-600	3	JLLN	$\begin{aligned} & 3-1 / 16 \\ & (77.8) \end{aligned}$	$\begin{aligned} & 2-1 / 32 \\ & (51.6) \end{aligned}$	$\begin{gathered} 1-1 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 1-19 / 32 \\ (40.5) \end{gathered}$	$\begin{gathered} 7 / 8 \\ (22.2) \end{gathered}$	$\begin{aligned} & 31 / 64 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 5 / 16 \\ & (7.9) \end{aligned}$
		JLLS	$\begin{aligned} & 3-63 / 64 \\ & (101.2) \end{aligned}$	$\begin{gathered} 2-61 / 64 \\ (75.0) \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 2-1 / 16 \\ (52.4) \end{gathered}$	$\begin{gathered} 1-49 / 64 \\ (44.8) \end{gathered}$	$\begin{aligned} & 31 / 64 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 5 / 16 \\ & (7.9) \end{aligned}$
700-800	3	JLLN	$\begin{gathered} 3-3 / 8 \\ (85.7) \end{gathered}$	$\begin{gathered} 2-7 / 32 \\ (64.3) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$	$\begin{aligned} & 2-1 / 16 \\ & (52.4) \end{aligned}$	$\begin{gathered} 7 / 8 \\ (22.2) \end{gathered}$	$\begin{aligned} & 35 / 64 \\ & (13.9) \end{aligned}$	$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$
		JLLS	$\begin{aligned} & 4-21 / 64 \\ & (109.9) \end{aligned}$	$\begin{gathered} 3-11 / 64 \\ (80.6) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$	$\begin{aligned} & 2-1 / 2 \\ & (63.5) \end{aligned}$	$\begin{gathered} 1-55 / 64 \\ (47.2) \end{gathered}$	$\begin{aligned} & 35 / 64 \\ & (13.9) \end{aligned}$	$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$
900-1200	3	JLLN	$\begin{gathered} 4 \\ (101.6) \end{gathered}$	$\begin{gathered} 2-17 / 32 \\ (64.3) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (63.5) \end{gathered}$	$\begin{aligned} & 1-1 / 32 \\ & (26.2) \end{aligned}$	$\begin{aligned} & 39 / 64 \\ & (15.5) \end{aligned}$	$\begin{gathered} 7 / 16 \\ (11.1) \end{gathered}$
		JLLS	$\begin{gathered} 5.27 \\ (133.9) \end{gathered}$	$\begin{gathered} 3.80 \\ (96.5) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2.63 \\ (66.8) \end{gathered}$	$\begin{gathered} 2.30 \\ (58.4) \end{gathered}$	$\begin{gathered} .67 \\ (15.5) \end{gathered}$	$\begin{gathered} .44 \\ (11.2) \end{gathered}$

300/600 VAC • Fast-Acting • 1-1200 Amperes

